Search results
Results from the WOW.Com Content Network
4), the perceived energy capacity of a small UPS product that has multiple DC outputs at different voltages but is simply listed with a single ampere-hour rating, e.g., 8800 mAh, would be exaggerated by a factor of 3.75 compared to that of a sealed 12-volt lead-acid battery where the ampere-hour rating, e.g., 7 Ah, is based on the total output ...
This page was last edited on 14 January 2014, at 22:11 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
All the SI prefixes are commonly applied to the watt-hour: a kilowatt-hour (kWh) is 1,000 Wh; a megawatt-hour (MWh) is 1 million Wh; a milliwatt-hour (mWh) is 1/1,000 Wh and so on. The kilowatt-hour is commonly used by electrical energy providers for purposes of billing, since the monthly energy consumption of a typical residential customer ...
The British imperial units and U.S. customary units for both energy and work include the foot-pound force (1.3558 J), the British thermal unit (BTU) which has various values in the region of 1055 J, the horsepower-hour (2.6845 MJ), and the gasoline gallon equivalent (about 120 MJ).
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m 2 ⋅s −3. [1] [2] [3] It is used to quantify the rate of energy transfer.
The watt, kilogram, joule, and the second are part of the International System of Units (SI). The hour is not, though it is accepted for use with the SI.Since a watt equals one joule per second and because one hour equals 3600 seconds, one watt-hour per kilogram can be expressed in SI units as 3600 joules per kilogram.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The ratings are based on EPA's formula, in which 33.7 kilowatt hours of electricity is equivalent to one gallon of gasoline (giving a heating value of 115,010 BTU/US gal), and the energy consumption of each vehicle during EPA's five standard drive cycle tests simulating varying driving conditions.