enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...

  3. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    The function is surjective, or onto, if each element of the codomain is mapped to by at least one element of the domain; that is, if the image and the codomain of the function are equal. A surjective function is a surjection . [ 1 ]

  4. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    Functions which satisfy property (4) are said to be "one-to-one functions" and are called injections (or injective functions). [2] With this terminology, a bijection is a function which is both a surjection and an injection, or using other words, a bijection is a function which is both "one-to-one" and "onto". [3]

  5. Range of a function - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_function

    For some functions, the image and the codomain coincide; these functions are called surjective or onto. For example, consider the function () =, which inputs a real number and outputs its double. For this function, both the codomain and the image are the set of all real numbers, so the word range is unambiguous.

  6. Function composition - Wikipedia

    en.wikipedia.org/wiki/Function_composition

    Iterated functions and flows occur naturally in the study of fractals and dynamical systems. To avoid ambiguity, some mathematicians [citation needed] choose to use ∘ to denote the compositional meaning, writing f ∘n (x) for the n-th iterate of the function f(x), as in, for example, f ∘3 (x) meaning f(f(f(x))).

  7. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    For example, the cosine function induces, by restriction, a bijection from the interval [0, π] onto the interval [−1, 1], and its inverse function, called arccosine, maps [−1, 1] onto [0, π]. The other inverse trigonometric functions are defined similarly.

  8. Horizontal line test - Wikipedia

    en.wikipedia.org/wiki/Horizontal_line_test

    Variations of the horizontal line test can be used to determine whether a function is surjective or bijective: The function f is surjective (i.e., onto) if and only if its graph intersects any horizontal line at least once. f is bijective if and only if any horizontal line will intersect the graph exactly once.

  9. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    By using S as the set of all functions from A to B, and defining, for each i in B, the property P i as "the function misses the element i in B" (i is not in the image of the function), the principle of inclusion–exclusion gives the number of onto functions between A and B as: [14]