enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantile regression - Wikipedia

    en.wikipedia.org/wiki/Quantile_regression

    Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.

  3. Quantile regression averaging - Wikipedia

    en.wikipedia.org/wiki/Quantile_regression_averaging

    Visualization of the Quantile Regression Averaging (QRA) probabilistic forecasting technique. The quantile regression problem can be written as follows: (|) =, where (|) is the conditional q-th quantile of the dependent variable (), = [, ^,,..., ^,] is a vector of point forecasts of individual models (i.e. independent variables) and β q is a vector of parameters (for quantile q).

  4. Generalized additive model for location, scale and shape

    en.wikipedia.org/wiki/Generalized_additive_model...

    The generalized additive model for location, scale and shape (GAMLSS) is a semiparametric regression model in which a parametric statistical distribution is assumed for the response (target) variable but the parameters of this distribution can vary according to explanatory variables.

  5. Q–Q plot - Wikipedia

    en.wikipedia.org/wiki/Q–Q_plot

    In statistics, a Q–Q plot (quantilequantile plot) is a probability plot, a graphical method for comparing two probability distributions by plotting their quantiles against each other. [1] A point ( x , y ) on the plot corresponds to one of the quantiles of the second distribution ( y -coordinate) plotted against the same quantile of the ...

  6. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  7. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    The inverse cumulative distribution function (quantile function) of the logistic distribution is a generalization of the logit function. Its derivative is called the quantile density function. They are defined as follows: (;,) = + ⁡ ().

  8. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".

  9. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    Quantile functions are used in both statistical applications and Monte Carlo methods. The quantile function is one way of prescribing a probability distribution, and it is an alternative to the probability density function (pdf) or probability mass function, the cumulative distribution function (cdf) and the characteristic function.