Search results
Results from the WOW.Com Content Network
In botany, a light curve shows the photosynthetic response of leaf tissue or algal communities to varying light intensities. The shape of the curve illustrates the principle of limiting factors; in low light levels, the rate of photosynthesis is limited by the concentration of chlorophyll and the efficiency of the light-dependent reactions, but in higher light levels it is limited by the ...
The reaction center contains two pigments that serve to collect and transfer the energy from photon absorption: BChl and Bph. BChl roughly resembles the chlorophyll molecule found in green plants, but, due to minor structural differences, its peak absorption wavelength is shifted into the infrared, with wavelengths as long as 1000 nm. Bph has ...
28.2% (sunlight energy collected by chlorophyll) → 68% is lost in conversion of ATP and NADPH to d-glucose, leaving; 9% (collected as sugar) → 35–40% of sugar is recycled/consumed by the leaf in dark and photo-respiration, leaving; 5.4% net leaf efficiency. Many plants lose much of the remaining energy on growing roots.
The PI (or photosynthesis-irradiance) curve is a graphical representation of the empirical relationship between solar irradiance and photosynthesis. A derivation of the Michaelis–Menten curve, it shows the generally positive correlation between light intensity and photosynthetic rate. It is a plot of photosynthetic rate as a function of light ...
The photosynthetic rate (Rate of CO 2 exchange in the leaf chamber) is the difference in CO 2 concentration through chamber, adjusted for the molar flow of air per m 2 of leaf area, mol m −2 s −1. The change in H 2 O vapour pressure is water vapour pressure out of leaf chamber, in mbar, minus the water vapour pressure into leaf chamber, in ...
Drawing of a Potometer. A potometer' (from Greek ποτό = drunken, and μέτρο = measure), sometimes known as transpirometer, is a device used for measuring the rate of water uptake of a leafy shoot which is almost equal to the water lost through transpiration. The causes of water uptake are photosynthesis and transpiration. [1]
The average rate of energy captured by global photosynthesis is approximately 130 terawatts, [6] [7] [8] which is about eight times the total power consumption of human civilization. [9] Photosynthetic organisms also convert around 100–115 billion tons (91–104 Pg petagrams , or billions of metric tons), of carbon into biomass per year.
In this test, light irradiation levels and leaf temperature must be controlled or measured, because while the Y(II) parameter levels vary with most types of plant stress, it also varies with light level and temperature. [12] [13] Y(II) values will be higher at lower light levels than at higher light levels. Y(II) has the advantage that it is ...