Search results
Results from the WOW.Com Content Network
In particle physics, a pion (/ ˈ p aɪ. ɒ n /, PIE-on) or pi meson, denoted with the Greek letter pi (π), is any of three subatomic particles: π 0, π +, and π −. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the ...
The intrinsic parity of the pion is P = −1 (since the pion is a bound state of a quark and an antiquark, which have opposite parities, with zero angular momentum), and parity is a multiplicative quantum number. Therefore, assuming the parent particle has zero spin, the two-pion and the three-pion final states have different parities (P = +1 ...
Mesons named with the letter "f" are scalar mesons (as opposed to a pseudo-scalar meson), and mesons named with the letter "a" are axial-vector mesons (as opposed to an ordinary vector meson) a.k.a. an isoscalar vector meson, while the letters "b" and "h" refer to axial-vector mesons with positive parity, negative C-parity, and quantum numbers I G of 1 + and 0 − respectively.
For example, a positive pion (π +) is made of one up quark and one down antiquark; and its corresponding antiparticle, the negative pion (π −), is made of one up antiquark and one down quark. Because mesons are composed of quarks, they participate in both the weak interaction and strong interaction.
All of the Δ baryons with mass near 1 232 MeV quickly decay via the strong interaction into a nucleon (proton or neutron) and a pion of appropriate charge. The relative probabilities of allowed final charge states are given by their respective isospin couplings. More rarely, the Δ + can decay into a proton and a photon and the Δ 0
A quark (/ k w ɔːr k, k w ɑːr k /) is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. [1] All commonly observable matter is composed of up quarks, down quarks and electrons.
GLP-1s affect cells in a tiny V-shaped structure in your brain stem. This zone is a chemoreceptor—a spot that makes you feel like hurling when it meets something it doesn’t like, says Kevin ...
Photon structure function can be described quantitatively in quantum chromodynamics (QCD), the theory of quarks as constituents of the strongly interacting elementary particles, which are bound together by gluonic forces. The primary splitting of photons to quark pairs, cf. Fig. 1, regulates the essential characteristics of the photon structure ...