Search results
Results from the WOW.Com Content Network
[2] [3]: 180 In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations. The discrete difference equations may then be solved iteratively to calculate a price for the option. [4]
The simplest lattice model is the binomial options pricing model; [7] the standard ("canonical" [8]) method is that proposed by Cox, Ross and Rubinstein (CRR) in 1979; see diagram for formulae. Over 20 other methods have been developed, [ 9 ] with each "derived under a variety of assumptions" as regards the development of the underlying's price ...
The Black model (sometimes known as the Black-76 model) is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.
In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options.Essentially, the model uses a "discrete-time" (lattice based) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting, which in general does not exist for the BOPM.
The trinomial tree is a lattice-based computational model used in financial mathematics to price options. It was developed by Phelim Boyle in 1986. It is an extension of the binomial options pricing model, and is conceptually similar. It can also be shown that the approach is equivalent to the explicit finite difference method for option ...
The payoff of the option, repriced under this change of numeraire, is max(0, S 1 (T)/S 2 (T) - 1). So the original option has become a call option on the first asset (with its numeraire pricing) with a strike of 1 unit of the riskless asset. Note the dividend rate q 1 of the first asset remains the same even with change of pricing.
The first application to option pricing was by Phelim Boyle in 1977 (for European options). In 1996, M. Broadie and P. Glasserman showed how to price Asian options by Monte Carlo. An important development was the introduction in 1996 by Carriere of Monte Carlo methods for options with early exercise features.
In financial mathematics, the Ho-Lee model is a short-rate model widely used in the pricing of bond options, swaptions and other interest rate derivatives, and in modeling future interest rates. [1]: 381 It was developed in 1986 by Thomas Ho [2] and Sang Bin Lee. [3] Under this model, the short rate follows a normal process: