Search results
Results from the WOW.Com Content Network
Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.
In gravity, a hollow sphere has a three-dimensional equipotential region inside, with no gravity from the sphere (see shell theorem). In electrostatics, a conductor is a three-dimensional equipotential region. In the case of a hollow conductor (Faraday cage [4]), the equipotential region includes the space inside.
In mathematics, the theory of finite sphere packing concerns the question of how a finite number of equally-sized spheres can be most efficiently packed. The question of packing finitely many spheres has only been investigated in detail in recent decades, with much of the groundwork being laid by László Fejes Tóth .
Solid sphere of radius r and mass m. = [1] Sphere (shell) of radius r 2 and mass m, with ... and the object is a hollow sphere. Right circular cone with radius r, ...
Denser sphere packings are known, but they involve unequal sphere packing. A packing density of 1, filling space completely, requires non-spherical shapes, such as honeycombs . Replacing each contact point between two spheres with an edge connecting the centers of the touching spheres produces tetrahedrons and octahedrons of equal edge lengths.
An ordinary sphere in three-dimensional space—the surface, not the solid ball—is just one example of what a sphere means in topology. Geometry defines a sphere rigidly, as a shape. Here are some alternatives. Implicit surface: x 2 0 + x 2 1 + x 2 2 = 1; This is the set of points in 3-dimensional Euclidean space found exactly one unit away ...
However, the optimal sphere packing question in dimensions other than 1, 2, 3, 8, and 24 is still open. Ulam's packing conjecture It is unknown whether there is a convex solid whose optimal packing density is lower than that of the sphere.
Faraday employed a 7 in. diameter by 10.5 in. tall pewter pail on a wooden stool,(B) [1] but modern demonstrations often use a hollow metal sphere with a hole in the top, [10] or a cylinder of metal screen, [9] [12] mounted on an insulating stand. Its outside surface is connected by a wire to a sensitive electric charge detector.