Search results
Results from the WOW.Com Content Network
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
Hence, in many cases the elements of a particular group have the same valency. However, this periodic trend is not always followed for heavier elements, especially for the f-block and the transition metals. These elements show variable valency as these elements have a d-orbital as the penultimate orbital and an s-orbital as the outermost orbital.
To do this, the nearest noble gas that precedes the element in question is written first, and then the electron configuration is continued from that point forward. For example, the electron notation of phosphorus is 1s 2 2s 2 2p 6 3s 2 3p 3, while the noble gas notation is [Ne] 3s 2 3p 3.
Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms. Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below.
Assume there is one electron in a given atomic orbital in a hydrogen-like atom (ion). The energy of its state is mainly determined by the electrostatic interaction of the (negative) electron with the (positive) nucleus. The energy levels of an electron around a nucleus are given by:
The higher the proton affinity, the stronger the base and the weaker the conjugate acid in the gas phase.The (reportedly) strongest known base is the ortho-diethynylbenzene dianion (E pa = 1843 kJ/mol), [3] followed by the methanide anion (E pa = 1743 kJ/mol) and the hydride ion (E pa = 1675 kJ/mol), [4] making methane the weakest proton acid [5] in the gas phase, followed by dihydrogen.
[note 2] However, the name "neptunium" had already been given to another proposed chemical element (though not the element that today bears the name neptunium, which was discovered in 1940). [ note 3 ] So instead, Winkler named the new element germanium (from the Latin word, Germania , for Germany) in honor of his homeland. [ 15 ]