Search results
Results from the WOW.Com Content Network
In exterior algebra and geometric algebra the exterior product of two vectors is a bivector, ... The vector triple product is defined as the cross product of one ...
For example, the inner product of a polar vector and an axial vector resulting from the cross product in the triple product should result in a pseudoscalar, a result which is more obvious if the calculation is framed as the exterior product of a vector and bivector. They generalise to other dimensions; in particular bivectors can be used to ...
The triple product of u, v, and w is geometrically a (signed) volume. ... The decomposable k-vectors have geometric interpretations: the bivector ...
Like the geometric product of two vectors, this geometric product can be grouped into symmetric and antisymmetric parts, one of which is a pure k-vector. In analogy the antisymmetric part of this product can be called a generalized dot product, and is roughly speaking the dot product of a "plane" (bivector), and a vector.
Given a bivector r = r 1 + hr 2, the ellipse for which r 1 and r 2 are a pair of conjugate semi-diameters is called the directional ellipse of the bivector r. [4]: 436 In the standard linear representation of biquaternions as 2 × 2 complex matrices acting on the complex plane with basis {1, h},
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...
where superscripts label vector components. On the other hand, the plane of the two vectors is represented by the exterior product or wedge product, denoted by a ∧ b. In this context of geometric algebra, this bivector is called a pseudovector, and is the Hodge dual of the cross product. [11]
A bivector is an element of the antisymmetric tensor product of a tangent space with itself. In geometric algebra , also, a bivector is a grade 2 element (a 2-vector) resulting from the wedge product of two vectors, and so it is geometrically an oriented area , in the same way a vector is an oriented line segment.