Search results
Results from the WOW.Com Content Network
One popular minimax approximation algorithm is the Remez algorithm. References External links. Minimax approximation algorithm at MathWorld; This page was ...
Bruce Ballard was the first to develop a technique, called *-minimax, that enables alpha-beta pruning in expectiminimax trees. [3] [4] The problem with integrating alpha-beta pruning into the expectiminimax algorithm is that the scores of a chance node's children may exceed the alpha or beta bound of its parent, even if the weighted value of each child does not.
In R. Fandom Noubiap and W. Seidel (2001) an algorithm for calculating a Gamma-minimax decision rule has been developed, when Gamma is given by a finite number of generalized moment conditions. Such a decision rule minimizes the maximum of the integrals of the risk function with respect to all distributions in Gamma.
Alpha–beta pruning is a search algorithm that seeks to decrease the number of nodes that are evaluated by the minimax algorithm in its search tree. It is an adversarial search algorithm used commonly for machine playing of two-player combinatorial games (Tic-tac-toe, Chess, Connect 4, etc.). It stops evaluating a move when at least one ...
The Remez algorithm or Remez exchange algorithm, published by Evgeny Yakovlevich Remez in 1934, is an iterative algorithm used to find simple approximations to functions, specifically, approximations by functions in a Chebyshev space that are the best in the uniform norm L ∞ sense. [1] It is sometimes referred to as Remes algorithm or Reme ...
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
Negamax search is a variant form of minimax search that relies on the zero-sum property of a two-player game. This algorithm relies on the fact that (,) = (,) to simplify the implementation of the minimax algorithm. More precisely, the value of a position to player A in such a game is the negation of the value to player B.
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]