enow.com Web Search

  1. Ad

    related to: how to simplify rational numbers with variables on one axis and 4 or 6 in half
  2. education.com has been visited by 100K+ users in the past month

    This site is a teacher's paradise! - The Bender Bunch

    • Activities & Crafts

      Stay creative & active with indoor

      & outdoor activities for kids.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0, a mathematical truth. But the same substitution applied to the original equation results in x/6 + 0/0 = 1, which is mathematically meaningless.

  3. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    For polynomials with rational number coefficients, one may search for roots which are rational numbers. Primitive part-content factorization (see above) reduces the problem of searching for rational roots to the case of polynomials with integer coefficients having no non-trivial common divisor.

  5. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.

  6. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .

  7. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation

  8. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    It is not known whether n q is rational for any positive integer n and positive non-integer rational q. [21] For example, it is not known whether the positive root of the equation 4 x = 2 is a rational number. [citation needed] It is not known whether e π or π e (defined using Kneser's extension) are rationals or not.

  9. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    Graph of a polynomial of degree 4, with 3 critical points and four real roots (crossings of the x axis) (and thus no complex roots). If one or the other of the local minima were above the x axis, or if the local maximum were below it, or if there were no local maximum and one minimum below the x axis, there would only be two real roots (and two complex roots).

  1. Ad

    related to: how to simplify rational numbers with variables on one axis and 4 or 6 in half