Search results
Results from the WOW.Com Content Network
One of the ongoing research issues for commercial fusion power development is the choice of material for the plasma-facing portions of the reactor vessel, also known as the first wall. Most reactors operate at the equivalent of a high vacuum and thus demand high-strength materials to resists the inward pressure of the magnets against the empty ...
Accelerator-based fusion is not practical because the reactor cross section is tiny; most of the particles in the accelerator will scatter off the fuel, not fuse with it. These scatterings cause the particles to lose energy to the point where they can no longer undergo fusion.
Prototype for development of Commercial Fusion Reactors 1.5–2 GW Fusion output. [62] K-DEMO (Korean fusion demonstration tokamak reactor) [63] Planned: 2037? National Fusion Research Institute: 6.8 m / 2.1 m: 7 T: 12 MA ? Prototype for the development of commercial fusion reactors with around 2200 MW of fusion power: DEMO (DEMOnstration Power ...
For instance, production reactors would use a thick "blanket" containing lithium around the reactor core in order to capture the high-energy neutrons being released, both to protect the rest of the reactor mass from these neutrons as well as produce tritium for fuel. The size of the blanket is a function of the neutron's energy, which is 14 MeV ...
Fusion reactors are not subject to catastrophic meltdown. [122] It requires precise and controlled temperature, pressure and magnetic field parameters to produce net energy, and any damage or loss of required control would rapidly quench the reaction. [123] Fusion reactors operate with seconds or even microseconds worth of fuel at any moment.
The T-15 (or Tokamak-15) is a Russian (previously Soviet) nuclear fusion research reactor located at the Kurchatov Institute, which is based on the (Soviet-invented) tokamak design. [2] It was the first industrial prototype fusion reactor to use superconducting magnets to control the plasma . [ 3 ]
The success of Alcator A led to the conceptual design, beginning in 1975, of a larger machine called Alcator B. However, the motor-generators used for Alcator A were not powerful enough to drive the new machine, necessitating the purchase and installation of new power supplies, a cost that the Energy Research and Development Administration (ERDA) was unwilling to fund.
The Joint European Torus (JET) was a magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK.Based on a tokamak design, the fusion research facility was a joint European project with the main purpose of opening the way to future nuclear fusion grid energy.