Search results
Results from the WOW.Com Content Network
Dynamic priority scheduling is a type of scheduling algorithm in which the priorities are calculated during the execution of the system. The goal of dynamic priority scheduling is to adapt to dynamically changing progress and to form an optimal configuration in a self-sustained manner.
Least slack time (LST) scheduling is an algorithm for dynamic priority scheduling. It assigns priorities to processes based on their slack time. Slack time is the amount of time left after a job if the job was started now. This algorithm is also known as least laxity first.
The scheduler is an operating system module that selects the next jobs to be admitted into the system and the next process to run. Operating systems may feature up to three distinct scheduler types: a long-term scheduler (also known as an admission scheduler or high-level scheduler), a mid-term or medium-term scheduler, and a short-term scheduler.
Earliest deadline first (EDF) or least time to go is a dynamic priority scheduling algorithm used in real-time operating systems to place processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to its deadline.
Real-time operating systems are event-driven and preemptive, meaning the OS can monitor the relevant priority of competing tasks, and make changes to the task priority. Event-driven systems switch between tasks based on their priorities, while time-sharing systems switch the task based on clock interrupts .
In computer science, rate-monotonic scheduling (RMS) [1] is a priority assignment algorithm used in real-time operating systems (RTOS) with a static-priority scheduling class. [2] The static priorities are assigned according to the cycle duration of the job, so a shorter cycle duration results in a higher job priority.
Fixed-priority preemptive scheduling is a scheduling system commonly used in real-time systems. [1] With fixed priority preemptive scheduling, the scheduler ensures that at any given time, the processor executes the highest priority task of all those tasks that are currently ready to execute.
The scheduling algorithm for each queue which can be different from FIFO. The method used to determine when to promote a process to a higher priority queue. The method used to determine when to demote a process to a lower-priority queue. The method used to determine which queue a process will enter when that process needs service.