enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    Note that though the pulling force is decreasing, the work strengthening is still progressing, that is, the true stress keeps growing but the engineering stress decreases because the shrinking section area is not considered. This region ends up with the fracture. After fracture, percent elongation and reduction in section area can be calculated.

  3. Tensile testing - Wikipedia

    en.wikipedia.org/wiki/Tensile_testing

    The elongation measurement is used to calculate the engineering strain, ... Percent bending should be under 1% on the wider face of loaded samples, and under 2% on ...

  4. Ductility - Wikipedia

    en.wikipedia.org/wiki/Ductility

    Ductility is a critical mechanical performance indicator, particularly in applications that require materials to bend, stretch, or deform in other ways without breaking. The extent of ductility can be quantitatively assessed using the percent elongation at break, given by the equation:

  5. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    For small values of these changes, ν is the amount of transversal elongation divided by the amount of axial compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, [1] such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer ...

  6. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    Yield Point Elongation (YPE) significantly impacts the usability of steel. In the context of tensile testing and the engineering stress-strain curve, the Yield Point is the initial stress level, below the maximum stress, at which an increase in strain occurs without an increase in stress.

  7. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    In the case of a material line element or fiber axially loaded, its elongation gives rise to an engineering normal strain or engineering extensional strain e, which equals the relative elongation or the change in length ΔL per unit of the original length L of the line element or fibers (in meters per meter). The normal strain is positive if ...

  8. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load.

  9. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening.