enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    In mathematics, positive semidefinite may refer to: Positive semidefinite function; Positive semidefinite matrix; Positive semidefinite quadratic form;

  3. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...

  4. Peres–Horodecki criterion - Wikipedia

    en.wikipedia.org/wiki/Peres–Horodecki_criterion

    As the transposition map preserves eigenvalues, the spectrum of () is the same as the spectrum of , and in particular () must still be positive semidefinite. Thus must also be positive semidefinite. This proves the necessity of the PPT criterion.

  5. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    Some authors use the name square root or the notation A 1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = B T B = A (for real-valued matrices, where B T is the transpose of B).

  6. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.

  7. Semidefinite programming - Wikipedia

    en.wikipedia.org/wiki/Semidefinite_programming

    Semidefinite programming (SDP) is a subfield of mathematical programming concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.

  8. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b

  9. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    L is positive-semidefinite (that is for all ). This can be seen from the fact that the Laplacian is symmetric and diagonally dominant. L is an M-matrix (its off-diagonal entries are nonpositive, yet the real parts of its eigenvalues are nonnegative). Every row sum and column sum of L is zero. Indeed, in the sum, the degree of the vertex is ...

  1. Related searches matlab check positive semidefinite or plural words with pictures and definition

    positive semidefinite matrixpositive semidefinite function