enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bicycle performance - Wikipedia

    en.wikipedia.org/wiki/Bicycle_performance

    According to a study a human at 70 kg (150 lb) requires about 60 watts to walk at 5 km/h (3.1 mph) on firm and flat ground, [6] while according to a calculator at kreuzotter.de the same person and power output on an ordinary bicycle will travel at 15 km/h (9.3 mph), [7] so in these conditions the energy expenditure of cycling is about one-third ...

  3. VAM (bicycling) - Wikipedia

    en.wikipedia.org/wiki/VAM_(bicycling)

    VAM is a parameter used in cycling as a measure of fitness and speed; it is useful for relatively objective comparisons of performances and estimating a rider's power output per kilogram of body mass, which is one of the most important qualities of a cyclist who competes in stage races and other mountainous [citation needed] events. Dr.

  4. Power-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Power-to-weight_ratio

    In the sport of competitive cycling athlete's performance is increasingly being expressed in VAMs and thus as a power-to-weight ratio in W/kg. This can be measured through the use of a bicycle powermeter or calculated from measuring incline of a road climb and the rider's time to ascend it.

  5. Pedelec - Wikipedia

    en.wikipedia.org/wiki/Pedelec

    On some models, by default two successive switchable batteries are housed in luggage bags, here is the range specified at medium power addition of 100 km. A conventional battery (36 V / 7 Ah) (1.9 to 5.1 kg mass in a pedelec [20]) has an energy content of around 250 Wh (1 kg of gasoline has about 11,500 Wh). The conversion of electrical energy ...

  6. Climbing specialist - Wikipedia

    en.wikipedia.org/wiki/Climbing_specialist

    For a 5% grade, each meter of road requires lifting the body weight by 5 cm. The power (watts) is equal to change in gravitational potential energy (joules) per unit time (seconds). For a 60 kilograms (130 lb) rider, the additional power needed is about 30 watts per meter/second of road speed (about 8 watts per km/hour).

  7. Wingate test - Wikipedia

    en.wikipedia.org/wiki/Wingate_test

    Katch et al. [12] used workloads of 0.053, 0.067, and 0.080 kp per kg bodyweight, while other researchers have increased the workload even higher, to 0.098 kp per kg bodyweight. [14] The advantage of increasing the workload can show an increased, and therefore more representative, value for peak power in collegiate athletes.

  8. Cycling power meter - Wikipedia

    en.wikipedia.org/wiki/Cycling_power_meter

    Thus, an athlete performing "interval" training while using a power meter can instantly see that they are producing 300 watts, for example, instead of waiting for their heart rate to climb to a certain point. In addition, power meters measure the force that moves the bike forward multiplied by the velocity, which is the desired goal.

  9. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =