enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The superposition of the two 1s atomic orbitals leads to the formation of the σ and σ* molecular orbitals. Two atomic orbitals in phase create a larger electron density, which leads to the σ orbital. If the two 1s orbitals are not in phase, a node between them causes a jump in energy, the σ* orbital.

  3. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.

  4. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Atomic orbitals must also overlap within space. They cannot combine to form molecular orbitals if they are too far away from one another. Atomic orbitals must be at similar energy levels to combine as molecular orbitals. Because if the energy difference is great, when the molecular orbitals form, the change in energy becomes small.

  5. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    Molecular orbitals are said to be degenerate if they have the same energy. For example, in the homonuclear diatomic molecules of the first ten elements, the molecular orbitals derived from the p x and the p y atomic orbitals result in two degenerate bonding orbitals (of low energy) and two degenerate antibonding orbitals (of high energy). [13]

  6. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    For example, in the case of the F 2 molecule, the F−F bond is formed by the overlap of p z orbitals of the two F atoms, each containing an unpaired electron. Since the nature of the overlapping orbitals are different in H 2 and F 2 molecules, the bond strength and bond lengths differ between H 2 and F 2 molecules.

  7. Conrotatory and disrotatory - Wikipedia

    en.wikipedia.org/wiki/Conrotatory_and_disrotatory

    Since thermal electrocyclic reactions occur in the HOMO, it is first necessary to draw the appropriate molecular orbitals. Next, the new carbon-carbon bond is formed by taking two of the p-orbitals and rotating them 90 degrees (see diagram). Since the new bond requires constructive overlap, the orbitals must be rotated in a certain way.

  8. Walsh diagram - Wikipedia

    en.wikipedia.org/wiki/Walsh_diagram

    Orbitals which interact to stabilize one configuration (ex. Linear) may or may not overlap in another configuration (ex. Bent), thus one geometry will be calculably more stable than the other. Typically, core orbitals (1s for B, C, N, O, F, and Ne) are excluded from Walsh diagrams because they are so low in energy that they do not experience a ...

  9. Non-bonding orbital - Wikipedia

    en.wikipedia.org/wiki/Non-bonding_orbital

    Some orbitals (e.g. p x and p y orbitals from the fluorine in ) may not have any other orbitals to combine with and become non-bonding molecular orbitals. In the example, the p x and p y orbitals remain p x and p y orbitals in shape but when viewed as molecular orbitals are thought of as non-bonding. The energy of the orbital does not depend on ...