Search results
Results from the WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
The Open Neural Network Exchange (ONNX) [ˈɒnɪks] [2] is an open-source artificial intelligence ecosystem [3] of technology companies and research organizations that establish open standards for representing machine learning algorithms and software tools to promote innovation and collaboration in the AI sector.
By utilizing a pre-trained image diffusion model as a base generator, the model efficiently generated high-quality and coherent videos. Fine-tuning the pre-trained model on video data addressed the domain gap between image and video data, enhancing the model's ability to produce realistic and consistent video sequences. [14]
Self-contained DNN Model Pre-processing and Post-processing Run-time configuration for tuning & calibration DNN model interconnect Common platform TensorFlow, Keras, Caffe, Torch: Algorithm training No No / Separate files in most formats No No No Yes ONNX: Algorithm training Yes No / Separate files in most formats No No No Yes
[33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44] TensorFlow provides a stable Python Application Program Interface , [45] as well as APIs without backwards compatibility guarantee for Javascript, [46] C++, [47] and Java.
OpenShot Video Editor is a free and open-source video editor for Windows, macOS, Linux, and ChromeOS. The project started in August 2008 by Jonathan Thomas, with the objective of providing a stable, free, and friendly to use video editor.
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
Up until version 2.3, Keras supported multiple backends, including TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML. [7] [8] [9] As of version 2.4, only TensorFlow was supported. Starting with version 3.0 (as well as its preview version, Keras Core), however, Keras has become multi-backend again, supporting TensorFlow, JAX, and ...