Search results
Results from the WOW.Com Content Network
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
A pivot table usually consists of row, column and data (or fact) fields. In this case, the column is ship date, the row is region and the data we would like to see is (sum of) units. These fields allow several kinds of aggregations, including: sum, average, standard deviation, count, etc.
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.
In the second line, the number one is added to the fraction, and again Excel displays only 15 figures. In the third line, one is subtracted from the sum using Excel. Because the sum in the second line has only eleven 1's after the decimal, the difference when 1 is subtracted from this displayed value is three 0's followed by a string of eleven 1's.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Data might include the string of text hello world, the number 5 or the date 10-Sep-97. A formula would begin with the equals sign, =5*3, but this would normally be invisible because the display shows the result of the calculation, 15 in this case, not the formula itself. This may lead to confusion in some cases.
Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").
The content of such spam may often vary in its details, which would render normal checksumming ineffective. By contrast, a "fuzzy checksum" reduces the body text to its characteristic minimum, then generates a checksum in the usual manner. This greatly increases the chances of slightly different spam emails producing the same checksum.