enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    ARMA is appropriate when a system is a function of a series of unobserved shocks (the MA or moving average part) as well as its own behavior. For example, stock prices may be shocked by fundamental information as well as exhibiting technical trending and mean-reversion effects due to market participants. [citation needed]

  3. In an ARIMA model, the integrated part of the model includes the differencing operator (1 − B) (where B is the backshift operator) raised to an integer power.For example,

  4. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    Non-seasonal ARIMA models are usually denoted ARIMA(p, d, q) where parameters p, d, q are non-negative integers: p is the order (number of time lags) of the autoregressive model, d is the degree of differencing (the number of times the data have had past values subtracted), and q is the order of the moving-average model. Seasonal ARIMA models ...

  5. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general ARMA and ARIMA models of time series, [3] which have a more complicated stochastic ...

  6. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    For example, for monthly data one would typically include either a seasonal AR 12 term or a seasonal MA 12 term. For Box–Jenkins models, one does not explicitly remove seasonality before fitting the model. Instead, one includes the order of the seasonal terms in the model specification to the ARIMA estimation software. However, it may be ...

  7. Partial autocorrelation function - Wikipedia

    en.wikipedia.org/wiki/Partial_autocorrelation...

    Partial autocorrelation is a commonly used tool for identifying the order of an autoregressive model. [6] As previously mentioned, the partial autocorrelation of an AR(p) process is zero at lags greater than p. [5] [8] If an AR model is determined to be appropriate, then the sample partial autocorrelation plot is examined to help identify the ...

  8. X-13ARIMA-SEATS - Wikipedia

    en.wikipedia.org/wiki/X-13ARIMA-SEATS

    X-13ARIMA-SEATS, successor to X-12-ARIMA and X-11, is a set of statistical methods for seasonal adjustment and other descriptive analysis of time series data that are implemented in the U.S. Census Bureau's software package. [3]

  9. Vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Vector_autoregression

    Continuing the above example, a 5th-order VAR would model each year's wheat price as a linear combination of the last five years of wheat prices. A lag is the value of a variable in a previous time period. So in general a pth-order VAR refers to a VAR model which includes lags for the last p time periods.