Search results
Results from the WOW.Com Content Network
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
algorithm tarjan is input: graph G = (V, E) output: set of strongly connected components (sets of vertices) index := 0 S := empty stack for each v in V do if v.index is undefined then strongconnect(v) function strongconnect(v) // Set the depth index for v to the smallest unused index v.index := index v.lowlink := index index := index + 1 S.push ...
Several algorithms based on depth-first search compute strongly connected components in linear time.. Kosaraju's algorithm uses two passes of depth-first search. The first, in the original graph, is used to choose the order in which the outer loop of the second depth-first search tests vertices for having been visited already and recursively explores them if not.
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
Add the walls of the cell to the wall list. While there are walls in the list: Pick a random wall from the list. If only one of the cells that the wall divides is visited, then: Make the wall a passage and mark the unvisited cell as part of the maze. Add the neighboring walls of the cell to the wall list. Remove the wall from the list.
Since IDDFS, at any point, is engaged in a depth-first search, it need only store a stack of nodes which represents the branch of the tree it is expanding. Since it finds a solution of optimal length, the maximum depth of this stack is d {\displaystyle d} , and hence the maximum amount of space is O ( d ) {\displaystyle O(d)} .
When used to implement a set of stacks, the structure is called a spaghetti stack, cactus stack or saguaro stack (after the saguaro, a kind of cactus). [1] Parent pointer trees are also used as disjoint-set data structures. The structure can be regarded as a set of singly linked lists that share part of their structure, in particular, their ...
Connected-component labeling (CCL), connected-component analysis (CCA), blob extraction, region labeling, blob discovery, or region extraction is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic.