Search results
Results from the WOW.Com Content Network
Coordinate descent is an optimization algorithm that successively minimizes along coordinate directions to find the minimum of a function.At each iteration, the algorithm determines a coordinate or coordinate block via a coordinate selection rule, then exactly or inexactly minimizes over the corresponding coordinate hyperplane while fixing all other coordinates or coordinate blocks.
Each possible contiguous sub-array is represented by a point on a colored line. That point's y-coordinate represents the sum of the sample. Its x-coordinate represents the end of the sample, and the leftmost point on that colored line represents the start of the sample. In this case, the array from which samples are taken is [2, 3, -1, -20, 5, 10].
Using (fully or semi-) dynamic convex hull data structures, the simplification performed by the algorithm can be accomplished in O(n log n) time. [6] Given specific conditions related to the bounding metric, it is possible to decrease the computational complexity to a range between O(n) and O(2n) through the application of an iterative method. [7]
The following JavaScript function applies De Casteljau's algorithm to an array of control points or poles as originally named by De Casteljau to reduce them one by one until reaching a point in the curve for a given t between 0 for the first point of the curve and 1 for the last one
The rotating calipers technique for designing geometric algorithms may also be interpreted as a form of the plane sweep, in the projective dual of the input plane: a form of projective duality transforms the slope of a line in one plane into the x-coordinate of a point in the dual plane, so the progression through lines in sorted order by their ...
The Bentley–Ottmann algorithm will insert a new segment s into this data structure when the sweep line L crosses the left endpoint p of this segment (i.e. the endpoint of the segment with the smallest x-coordinate, provided the sweep line L starts from the left, as explained above in this article).
The mapping defined by P → Q is called inversion with respect to circle C. The line p through Q which is perpendicular to the line OP is called the polar [22] of the point P with respect to circle C. Let q be a line not passing through O. Drop a perpendicular from O to q, meeting q at the point P (this is the point of q that is closest to O).
The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [5] [6] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [7] or they can be used to build a pointer based quadtree.