enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    If the linear transformation is expressed in the form of an n by n matrix A, then the eigenvalue equation for a linear transformation above can be rewritten as the matrix multiplication =, where the eigenvector v is an n by 1 matrix. For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it.

  5. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.

  6. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The surviving diagonal elements, a i, j, are known as eigenvalues and designated with λ i in the equation, which reduces to =. The resulting equation is known as eigenvalue equation [4] and used to derive the characteristic polynomial and, further, eigenvalues and eigenvectors.

  7. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  8. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    In fact, a matrix A over a field containing all of the eigenvalues of A (for example, any matrix over an algebraically closed field) is similar to a triangular matrix. This can be proven by using induction on the fact that A has an eigenvector, by taking the quotient space by the eigenvector and inducting to show that A stabilizes a flag, and ...

  9. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix (a process known as diagonalization).