enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.

  3. Atomic mass - Wikipedia

    en.wikipedia.org/wiki/Atomic_mass

    The atomic mass (ma or m) is the mass of an atom. Although the SI unit of mass is the kilogram (symbol: kg), atomic mass is often expressed in the non-SI unit dalton (symbol: Da) – equivalently, unified atomic mass unit (u). 1 Da is defined as 1⁄12 of the mass of a free carbon-12 atom at rest in its ground state. [1]

  4. Hydrogen atom - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_atom

    A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a nucleus of a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe. [1]

  5. Even and odd atomic nuclei - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_atomic_nuclei

    For mass numbers of 147, 151, and 209+, the beta-stable isobar of that mass number has been observed to undergo alpha decay. (In theory, mass number 143 to 155, 160 to 162, and 165+ can also alpha decay.) This gives a total of 101 stable nuclides with odd mass numbers.

  6. Mass excess - Wikipedia

    en.wikipedia.org/wiki/Mass_excess

    The mass excess of a nuclide is the difference between its actual mass and its mass number in daltons.It is one of the predominant methods for tabulating nuclear mass. The mass of an atomic nucleus is well approximated (less than 0.1% difference for most nuclides) by its mass number, which indicates that most of the mass of a nucleus arises from mass of its constituent protons and neutrons.

  7. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    v. t. e. Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or "decays" into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium ...

  8. Positron emission - Wikipedia

    en.wikipedia.org/wiki/Positron_emission

    Since tables of masses are for atomic masses, + + + +, and, since the mass of the positron is identical to that of the electron, the overall result is that the mass-energy of two electrons is required, and the β + decay is energetically possible if and only if the mass of the parent atom exceeds the mass of the daughter atom by at least two ...

  9. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Mass number. A = (Relative) atomic mass = Mass number = Sum of protons and neutrons. N = Number of neutrons. Z = Atomic number = Number of protons = Number of electrons. A = Z + N {\displaystyle A=Z+N\,\!} Mass in nuclei. M'nuc = Mass of nucleus, bound nucleons. MΣ = Sum of masses for isolated nucleons.