enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planetary mass - Wikipedia

    en.wikipedia.org/wiki/Planetary_mass

    The choice of solar mass, M ☉, as the basic unit for planetary mass comes directly from the calculations used to determine planetary mass.In the most precise case, that of the Earth itself, the mass is known in terms of solar masses to twelve significant figures: the same mass, in terms of kilograms or other Earth-based units, is only known to five significant figures, which is less than a ...

  3. Gravity of Mars - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Mars

    The gravity of Mars is a natural phenomenon, due to the law of gravity, or gravitation, by which all things with mass around the planet Mars are brought towards it. It is weaker than Earth's gravity due to the planet's smaller mass. The average gravitational acceleration on Mars is 3.72076 m/s 2 (about 38% of the gravity of Earth) and it varies ...

  4. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Mars seen through a 16-inch amateur telescope, at 2020 opposition. Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km) (12.673 light minutes), and an eccentricity of 0.0934. [ 1 ][ 2 ] The planet orbits the Sun in 687 days [ 3 ] and travels 9.55 AU in doing so, [ 4 ] making the average orbital speed 24 km/s.

  5. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    The mass of an object is a measure of the object’s inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s 2.

  6. Canonical units - Wikipedia

    en.wikipedia.org/wiki/Canonical_units

    The Canonical Distance Unit is defined to be the mean radius of the reference orbit. The Canonical Time Unit is defined by the gravitational parameter : where. In canonical units, the gravitational parameter is given by: Any triplet of numbers, and that satisfy the equation above is a “canonical” set. The quantity of the time unit [CTU] can ...

  7. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    Delta- v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta- v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission.

  8. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    At one point, 1.35 million Earth years ago, Mars had an eccentricity of roughly 0.002, much less than that of Earth today. [188] Mars's cycle of eccentricity is 96,000 Earth years compared to Earth's cycle of 100,000 years. [189] Mars has its closest approach to Earth in a synodic period of 779.94 days. It should not be confused with Mars ...

  9. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    Standard gravitational parameter. The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G(m1 + m2), or as GM when one body is much larger than the other: For several objects in the Solar System, the value of μ is ...