Search results
Results from the WOW.Com Content Network
In algebra, a nested radical is a radical expression (one containing a square root sign, cube root sign, etc.) that contains (nests) another radical expression. Examples include , which arises in discussing the regular pentagon, and more complicated ones such as
The eight other solutions are nonreal complex numbers, which are also algebraic and have the form =, where r is a fifth root of unity, which can be expressed with two nested square roots. See also Quintic function § Other solvable quintics for various other examples in degree 5.
Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.
Viète's formula, as printed in Viète's Variorum de rebus mathematicis responsorum, liber VIII (1593). In mathematics, Viète's formula is the following infinite product of nested radicals representing twice the reciprocal of the mathematical constant π: = + + + It can also be represented as = = +.
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
For example, let () = be the usual square root function on positive real numbers. One may extend its domain to a neighbourhood of z = 1 {\displaystyle z=1} in the complex plane, and then further along curves starting at z = 1 {\displaystyle z=1} , so that the values along a given curve vary continuously from 1 = 1 {\displaystyle {\sqrt {1}}=1} .
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]
For example, [] is the smallest subring of C containing all the integers and ; it consists of all numbers of the form +, where m and n are arbitrary integers. Another example: Z [ 1 / 2 ] {\displaystyle \mathbf {Z} [1/2]} is the subring of Q consisting of all rational numbers whose denominator is a power of 2 .