enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary (Couette flow), is defined by. where: γ ˙ {\displaystyle {\dot {\gamma }}} is the shear rate, measured in reciprocal seconds; v is the velocity of the moving plate, measured in meters per second; h is the distance ...

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

  4. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    v. t. e. A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. [1][2][3][4] Stresses are proportional to the rate of change of the fluid's velocity vector. A fluid is Newtonian only if the tensors that ...

  5. Shear thinning - Wikipedia

    en.wikipedia.org/wiki/Shear_thinning

    At high shear rates, polymers are entirely disentangled and the viscosity value of the system plateaus at η ∞, or the infinite shear viscosity plateau. At low shear rates, the shear is too low to be impeded by entanglements and the viscosity value of the system is η 0, or the zero shear rate viscosity. The value of η ∞ represents the ...

  6. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    The strain rate is a concept of materials science and continuum mechanics that plays an essential role in the physics of fluids and deformable solids. In an isotropic Newtonian fluid, in particular, the viscous stress is a linear function of the rate of strain, defined by two coefficients, one relating to the expansion rate (the bulk viscosity ...

  7. Apparent viscosity - Wikipedia

    en.wikipedia.org/wiki/Apparent_viscosity

    In fluid mechanics, apparent viscosity (sometimes denoted η) [1] is the shear stress applied to a fluid divided by the shear rate: {\displaystyle \eta = {\frac {\tau } {\dot {\gamma }}}} For a Newtonian fluid, the apparent viscosity is constant, and equal to the Newtonian viscosity of the fluid, but for non-Newtonian fluids, the apparent ...

  8. Non-Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Non-Newtonian_fluid

    In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different. The fluid can even exhibit time-dependent viscosity. Therefore ...

  9. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    v. t. e. In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and ...