Ads
related to: quadratic equation square root propertykutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Unlike methods involving factoring the equation, which is reliable only if the roots are rational, completing the square will find the roots of a quadratic equation even when those roots are irrational or complex. For example, consider the equation + =
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
The square root of a univariate quadratic function gives rise to one of the four conic sections, almost always either to an ellipse or to a hyperbola. If a > 0 , {\displaystyle a>0,} then the equation y = ± a x 2 + b x + c {\displaystyle y=\pm {\sqrt {ax^{2}+bx+c}}} describes a hyperbola, as can be seen by squaring both sides.
In particular, the two solutions of a quadratic equation are conjugate, as per the in the quadratic formula =. Complex conjugation is the special case where the square root is i = − 1 , {\displaystyle i={\sqrt {-1}},} the imaginary unit .
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.
Ads
related to: quadratic equation square root propertykutasoftware.com has been visited by 10K+ users in the past month