Search results
Results from the WOW.Com Content Network
In many programming languages, map is a higher-order function that applies a given function to each element of a collection, e.g. a list or set, returning the results in a collection of the same type. It is often called apply-to-all when considered in functional form.
In computer programming, apply applies a function to a list of arguments. Eval and apply are the two interdependent components of the eval-apply cycle, which is the essence of evaluating Lisp, described in SICP. [1] Function application corresponds to beta reduction in lambda calculus.
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
Hashing is an example of a space-time tradeoff. If memory is infinite, the entire key can be used directly as an index to locate its value with a single memory access. On the other hand, if infinite time is available, values can be stored without regard for their keys, and a binary search or linear search can be used to retrieve the element.
Applying fmap (+1) to a binary tree of integers increments each integer in the tree by one.. In functional programming, a functor is a design pattern inspired by the definition from category theory that allows one to apply a function to values inside a generic type without changing the structure of the generic type.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Some parallel programming systems, such as OpenMP and Cilk, have language support for the map pattern in the form of a parallel for loop; [2] languages such as OpenCL and CUDA support elemental functions (as "kernels") at the language level. The map pattern is typically combined with other parallel design patterns.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.