Search results
Results from the WOW.Com Content Network
Existential generalization; Type: Rule of inference ... The principle embodied in these two operations is the link between quantifications and the singular statements ...
One can in principle dispense entirely with functions of arity greater than 2 and predicates of arity greater than 1 in theories that include a pairing function. This is a function of arity 2 that takes pairs of elements of the domain and returns an ordered pair containing them.
According to Willard Van Orman Quine, universal instantiation and existential generalization are two aspects of a single principle, for instead of saying that "∀x x = x" implies "Socrates = Socrates", we could as well say that the denial "Socrates ≠ Socrates" implies "∃x x ≠ x".
The following are special cases of universal generalization and existential elimination; these occur in substructural logics, such as linear logic. Rule of weakening (or monotonicity of entailment) (aka no-cloning theorem), ¯
A principle in classical logic stating that from a falsehood, any conclusion can be derived, also known as the principle of explosion. existence predicate A predicate, usually occurring in free logics, that asserts the existence of the referent of a constant. [127] [128] existential generalization
The full generalization rule allows for hypotheses to the left of the turnstile, but with restrictions. Assume Γ {\displaystyle \Gamma } is a set of formulas, φ {\displaystyle \varphi } a formula, and Γ ⊢ φ ( y ) {\displaystyle \Gamma \vdash \varphi (y)} has been derived.
Axiom scheme for Existential Generalization. Given a formula ϕ {\displaystyle \phi } in a first-order language L {\displaystyle {\mathfrak {L}}} , a variable x {\displaystyle x} and a term t {\displaystyle t} that is substitutable for x {\displaystyle x} in ϕ {\displaystyle \phi } , the below formula is universally valid.
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃ x " or " ∃( x ...