Search results
Results from the WOW.Com Content Network
Amide coupling is one of the most common reactions in organic chemistry and DMTMM is one reagent used for that reaction. The mechanism of DMTMM coupling is similar to other common amide coupling reactions involving activated carboxylic acids. [1] Its precursor, 2-chloro-4,6,-dimethoxy-1,3,5-triazine (CDMT), has also been used for amide coupling.
The scheme above shows the general mechanistic steps for EDC-mediated coupling of carboxylic acids and amines under acidic conditions. The tetrahedral intermediate and the aminolysis steps are not shown explicitly. EDC couples primary amines, and other nucleophiles, [5] to carboxylic acids by creating an activated ester leaving group. First ...
In one important reaction type, a main group organometallic compound of the type R-M (where R = organic group, M = main group centre metal atom) reacts with an organic halide of the type R'-X with formation of a new carbon-carbon bond in the product R-R'. The most common type of coupling reaction is the cross coupling reaction. [1] [2] [3]
TCFH itself is a common reagent used in the preparation of uronium and guanidinium salts used for amide bond formation and peptide synthesis, such as HATU. [3] [4] [5]Amide bond formation with TCFH can be performed in a wide range of organic solvents, most commonly acetonitrile, but also water [6] and in the solid state. [7]
Weinreb and Nahm originally proposed the following reaction mechanism to explain the selectivity shown in reactions of the Weinreb–Nahm amide. Their suggestion was that the tetrahedral intermediate (A below) formed as a result of nucleophilic addition by the organometallic reagent is stabilized by chelation from the methoxy group as shown. [1]
The reaction mechanism is described as follows: . With amines, the reaction proceeds without problems to the corresponding amides because amines are more nucleophilic.If the esterification is slow, a side-reaction occurs, diminishing the final yield or complicating purification of the product.
N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) is an irreversible dopamine-receptor antagonist. [2]EEDQ is also a highly specific reagent for carboxyl groups. It enables the coupling of acylamino acids with amino acid esters in high yield and without racemization.
BOP (benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate) is a reagent commonly used for the synthesis of amides from carboxylic acids and amines in peptide synthesis. [1] [2] It can be prepared from 1-hydroxybenzotriazole and a chlorophosphonium reagent under basic conditions. [3]