Search results
Results from the WOW.Com Content Network
QuTiP, short for the Quantum Toolbox in Python, is an open-source computational physics software library for simulating quantum systems, particularly open quantum systems. [1] [2] QuTiP allows simulation of Hamiltonians with arbitrary time-dependence, allowing simulation of situations of interest in quantum optics, ion trapping, superconducting circuits and quantum nanomechanical resonators.
Quil has support for defining possibly parametrized gates in matrix form (the language does not include a way to verify that the matrices are unitary, which is a necessary condition for the physical realizability of the defined gate) and their application on qubits.
For combinatorial optimization, the quantum approximate optimization algorithm (QAOA) [6] briefly had a better approximation ratio than any known polynomial time classical algorithm (for a certain problem), [7] until a more effective classical algorithm was proposed. [8] The relative speed-up of the quantum algorithm is an open research question.
Quantum Trajectory Theory (QTT) is a formulation of quantum mechanics used for simulating open quantum systems, quantum dissipation and single quantum systems. [1] It was developed by Howard Carmichael in the early 1990s around the same time as the similar formulation, known as the quantum jump method or Monte Carlo wave function (MCWF) method, developed by Dalibard, Castin and Mølmer. [2]
Quantum programming is the process of designing or assembling sequences of instructions, called quantum circuits, using gates, switches, and operators to manipulate a quantum system for a desired outcome or results of a given experiment.
Qiskit is made of elements that work together to enable quantum computing. The central goal of Qiskit is to build a software stack that makes it easier for anyone to use quantum computers, regardless of their skill level or area of interest; Qiskit allows users to design experiments and applications and run them on real quantum computers and/or classical simulators.
The U(1), SU(2), and SU(3) lattice gauge theories can be reformulated into a form that can be simulated using "spin qubit manipulations" on a universal quantum computer. [ 10 ] Limitations
Path integral Monte Carlo (PIMC) is a quantum Monte Carlo method used to solve quantum statistical mechanics problems numerically within the path integral formulation. The application of Monte Carlo methods to path integral simulations of condensed matter systems was first pursued in a key paper by John A. Barker. [1] [2]