Ad
related to: square free element maths
Search results
Results from the WOW.Com Content Network
In mathematics, a square-free element is an element r of a unique factorization domain R that is not divisible by a non-trivial square. This means that every s such that s 2 ∣ r {\displaystyle s^{2}\mid r} is a unit of R .
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 3 2. The smallest ...
Each vertex represents an element of the free group, and each edge represents multiplication by a or b. In mathematics, the free group F S over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms (e.g. st = suu −1 t but s ≠ t −1 ...
Let F be a free ring (that is, free algebra over the integers) with the set X of symbols, that is, F consists of polynomials with integral coefficients in noncommuting variables that are elements of X. A free ring satisfies the universal property: any function from the set X to a ring R factors through F so that F → R is the unique ring ...
Every such quadratic field is some () where is a (uniquely defined) square-free integer different from and . If d > 0 {\displaystyle d>0} , the corresponding quadratic field is called a real quadratic field , and, if d < 0 {\displaystyle d<0} , it is called an imaginary quadratic field or a complex quadratic field , corresponding to whether or ...
A polynomial has a square root if and only if all exponents of the square-free decomposition are even. In this case, a square root is obtained by dividing these exponents by 2. Thus the problem of deciding if a polynomial has a square root, and of computing it if it exists, is a special case of square-free factorization.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
To obtain an infinite square-free words, start with any square-free word such as 0, and successively apply a square-free morphism h to it. The resulting words preserve the property of square-freeness. For example, let h be a square-free morphism, then as , () is an infinite square-free word.
Ad
related to: square free element maths