enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    2 O is sp 3 hybridized in which the 2s atomic orbital and the three 2p orbitals of oxygen are hybridized to form four new hybridized orbitals which then participate in bonding by overlapping with the hydrogen 1s orbitals. As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with ...

  3. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    In particular, Pauling introduced the concept of hybridisation, where atomic s and p orbitals are combined to give hybrid sp, sp 2, and sp 3 orbitals. Hybrid orbitals proved powerful in explaining the molecular geometries of simple molecules like methane, which is tetrahedral with an sp 3 carbon atom and bond angles of 109.5° between the four ...

  4. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  5. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    Water (H 2 O) is an example of a bent molecule, as well as its analogues. The bond angle between the two hydrogen atoms is approximately 104.45°. [ 1 ] Nonlinear geometry is commonly observed for other triatomic molecules and ions containing only main group elements, prominent examples being nitrogen dioxide (NO 2 ), sulfur dichloride (SCl 2 ...

  6. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    In ethene, the two carbon atoms form a σ bond by overlapping one sp 2 orbital from each carbon atom. The π bond between the carbon atoms perpendicular to the molecular plane is formed by 2p–2p overlap. Each carbon atom forms covalent C–H bonds with two hydrogens by s–sp 2 overlap, all with 120° bond angles. The hydrogen–carbon bonds ...

  7. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    In lead, the effective bond order is reduced even further to a single bond, with two lone pairs for each lead atom (figure C [19]). In the organogermanium compound (Scheme 1 in the reference), the effective bond order is also 1, with complexation of the acidic isonitrile (or isocyanide) C-N groups, based on interaction with germanium's empty 4p ...

  8. Amphoterism - Wikipedia

    en.wikipedia.org/wiki/Amphoterism

    The water molecule is amphoteric in aqueous solution. It can either gain a proton to form a hydronium ion H 3 O +, or else lose a proton to form a hydroxide ion OH −. [7] Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base. H 2 O + H 2 O ...

  9. Tetrahedral carbonyl addition compound - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_carbonyl...

    For the sp 3 hybridized hydrate the bonds have to be distorted by about 49˚, while for the sp 2 hybridized ketone the bond angle distortion is about 60˚. So the addition to the carbonyl group allows some of the strain inherent in the small ring to be released, which is why cyclopropanone and cyclobutanone are very reactive electrophiles.