Search results
Results from the WOW.Com Content Network
Given a formula X, the negation ¬X is a formula. Given two formulas X and Y, and a binary connective b (such as the logical conjunction ∧), the expression (X b Y) is a formula. (Note the parentheses.) Through this construction, all of the formulas of propositional logic can be built up from propositional variables as a basic unit.
negation: not propositional logic, Boolean algebra: The statement is true if and only if A is false. A slash placed through another operator is the same as placed in front. The prime symbol is placed after the negated thing, e.g. ′ [2]
In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.
In classical logic, negation is normally identified with the truth function that takes truth to falsity (and vice versa). In intuitionistic logic , according to the Brouwer–Heyting–Kolmogorov interpretation , the negation of a proposition P {\displaystyle P} is the proposition whose proofs are the refutations of P {\displaystyle P} .
A literal is a propositional variable or the negation of a propositional variable. Two literals are said to be complements if one is the negation of the other (in the following, is taken to be the complement to ). The resulting clause contains all the literals that do not have complements. Formally:
A well-formed formula is any atomic formula, or any formula that can be built up from atomic formulas by means of operator symbols according to the rules of the grammar. The language L {\displaystyle {\mathcal {L}}} , then, is defined either as being identical to its set of well-formed formulas, [ 48 ] or as containing that set (together with ...
This way, a mechanical proving tool needs to maintain only one set of formulas (assumptions), rather than two sets (assumptions and (sub)goals). Propositional Horn clauses are also of interest in computational complexity. The problem of finding truth-value assignments to make a conjunction of propositional Horn clauses true is known as HORNSAT.
A propositional logic formula, also called Boolean expression, is built from variables, operators AND (conjunction, also denoted by ∧), OR (disjunction, ∨), NOT (negation, ¬), and parentheses. A formula is said to be satisfiable if it can be made TRUE by assigning appropriate logical values (i.e. TRUE, FALSE) to