enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The tangent plane to a surface at a given point p is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at p , and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to p as these points converge to p .

  3. Asymptotic curve - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_curve

    The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. [ 1 ] An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point.

  4. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    The tangent plane at a regular point is the affine plane in R 3 spanned by these vectors and passing through the point r(u, v) on the surface determined by the parameters. Any tangent vector can be uniquely decomposed into a linear combination of r u {\displaystyle \mathbf {r} _{u}} and r v . {\displaystyle \mathbf {r} _{v}.}

  5. Surface (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Surface_(mathematics)

    The tangent plane is an affine concept, because its definition is independent of the choice of a metric. In other words, any affine transformation maps the tangent plane to the surface at a point to the tangent plane to the image of the surface at the image of the point.

  6. Affine connection - Wikipedia

    en.wikipedia.org/wiki/Affine_connection

    Conversely, given a curve on S, the tangent plane can be rolled along that curve. This provides a way to identify the tangent planes at different points along the curve: in particular, a tangent vector in the tangent space at one point on the curve is identified with a unique tangent vector at any other point on the curve.

  7. Tangent space - Wikipedia

    en.wikipedia.org/wiki/Tangent_space

    In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on ...

  8. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    Every point in the plane has at least one tangent line to γ passing through it, and so region filled by the tangent lines is the whole plane. The boundary E 3 is therefore the empty set. Indeed, consider a point in the plane, say (x 0,y 0). This point lies on a tangent line if and only if there exists a t such that

  9. Translation surface (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Translation_surface...

    The tangent plane at is generated by the tangentvectors of the generatrices at this point, if these vectors are linearly independent. If the precondition γ 1 ( 0 ) = γ 2 ( 0 ) = 0 → {\displaystyle \gamma _{1}(0)=\gamma _{2}(0)={\vec {0}}} is not fulfilled, the surface defined by (TS) may not contain the origin and the curves c 1 , c 2 ...