Search results
Results from the WOW.Com Content Network
Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …
Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array. If the array contains all non-positive numbers, then a solution is any subarray of size 1 containing the maximal value of the array (or the empty subarray, if it is permitted).
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
The problem is then to produce an array such that all "bottom" elements come before (have an index less than the index of) all "middle" elements, which come before all "top" elements. One algorithm is to have the top group grow down from the top of the array, the bottom group grow up from the bottom, and keep the middle group just above the ...
Thus a one-dimensional array is a list of data, a two-dimensional array is a rectangle of data, [12] a three-dimensional array a block of data, etc. This should not be confused with the dimension of the set of all matrices with a given domain, that is, the number of elements in the array.
In the static predecessor problem, the set of elements does not change, but in the dynamic predecessor problem, insertions into and deletions from the set are allowed. [ 1 ] The predecessor problem is a simple case of the nearest neighbor problem, and data structures that solve it have applications in problems like integer sorting .
A fair solution must guarantee that each philosopher will eventually eat, no matter how slowly that philosopher moves relative to the others. The following source code is a C++11 implementation of the resource hierarchy solution for five philosophers. The sleep_for() function simulates the time normally spent with business logic. [6]
Such solutions are commonly used in scientific and engineering settings. Modern programming languages that support array programming (also known as vector or multidimensional languages) have been engineered specifically to generalize operations on scalars to apply transparently to vectors, matrices, and higher-dimensional