Search results
Results from the WOW.Com Content Network
The Lorenz attractor is difficult to analyze, but the action of the differential equation on the attractor is described by a fairly simple geometric model. [24] Proving that this is indeed the case is the fourteenth problem on the list of Smale's problems .
The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...
A plot of Lorenz' strange attractor for values ρ=28, σ = 10, β = 8/3. The butterfly effect or sensitive dependence on initial conditions is the property of a dynamical system that, starting from any of various arbitrarily close alternative initial conditions on the attractor, the iterated points will become arbitrarily spread out from each other.
The Lorenz attractor is a 3-dimensional structure corresponding to the long-term behavior of a chaotic flow, noted for its butterfly shape. The map shows how the state of a dynamical system (the three variables of a three-dimensional system) evolves over time in a complex, non-repeating pattern.
In physics, a dynamical system is described as a "particle or ensemble of particles whose state varies over time and thus obeys differential equations involving time derivatives". [3] In order to make a prediction about the system's future behavior, an analytical solution of such equations or their integration over time through computer ...
Burke-Shaw chaotic attractor [8] continuous: real: 3: 2: Chen chaotic attractor [9] continuous: real: 3: 3: Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and ...
The Malkus waterwheel, also referred to as the Lorenz waterwheel or chaotic waterwheel, [1] is a mechanical model that exhibits chaotic dynamics. Its motion is governed by the Lorenz equations. While classical waterwheels rotate in one direction at a constant speed, the Malkus waterwheel exhibits chaotic motion where its rotation will speed up ...
Visual representation of a strange attractor. [1] Another visualization of the same 3D attractor is this video.Code capable of rendering this is available.. In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, [2] for a wide variety of starting conditions of the system.