Search results
Results from the WOW.Com Content Network
Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation sequencing.
These types of false-positive variants are filtered out by the duplex sequencing method since mutations need to be accurately matched in both strands of DNA to be validated as true mutations. Duplex sequencing can theoretically detect mutations with frequencies as low as 10 −8 compared to the 10 −2 rate of standard NGS methods. [1] [2] [10]
New methods such as next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing have enabled faster, more accurate, and more cost-effective sequencing of RNA molecules. These advances have opened up new possibilities for studying gene expression, identifying new genes, and understanding the regulation of gene expression.
Computational methods and next-generation sequencing (NGS) technologies to are being employed to study DNA methylation and histone modifications, which are essential in cancer research. High-throughput sequencing offers valuable insights into epigenetic changes, and the growing volume of these datasets drives the continuous development of ...
SNV calling from NGS data is any of a range of methods for identifying the existence of single nucleotide variants (SNVs) from the results of next generation sequencing (NGS) experiments. These are computational techniques, and are in contrast to special experimental methods based on known population-wide single nucleotide polymorphisms (see ...
Workflow for DNA nanoball sequencing [1] DNA nanoball sequencing is a high throughput sequencing technology that is used to determine the entire genomic sequence of an organism. The method uses rolling circle replication to amplify small fragments of genomic DNA into DNA nanoballs. Fluorescent nucleotides bind to complementary nucleotides and ...
Talkowski et al. [9] compared different approaches to detect balanced chromosome alterations, and showed that modified jumping library in combination with next generation DNA sequencing is an accurate method for mapping chromosomal breakpoints. Two varieties of jumping libraries (short-jump libraries and custom barcoded jumping libraries) were ...
One type of sequencing method can be used in preference to another depending on the type of the sample, for a genomic sample assembly-based methods is used; for a metagenomic sample it is preferable to use read-based methods. [10] Metagenomic sequencing methods have provided better results than genomics, due to these present fewer false negatives.