Search results
Results from the WOW.Com Content Network
μ: M ⊗ M → M called multiplication, η: I → M called unit, such that the pentagon diagram. and the unitor diagram commute. In the above notation, 1 is the identity morphism of M, I is the unit element and α, λ and ρ are respectively the associativity, the left identity and the right identity of the monoidal category C.
Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.
Function f : [Z] 3 → [Z] 6 given by [k] 3 ↦ [3k] 6 is a semigroup homomorphism, since [3k ⋅ 3l] 6 = [9kl] 6 = [3kl] 6. However, f([1] 3) = [3] 6 ≠ [1] 6, so a monoid homomorphism is a semigroup homomorphism between monoids that maps the identity of the first monoid to the identity of the second monoid and the latter condition cannot be ...
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"
If a connected graph is a Cartesian product, it can be factorized uniquely as a product of prime factors, graphs that cannot themselves be decomposed as products of graphs. [2] However, Imrich & Klavžar (2000) describe a disconnected graph that can be expressed in two different ways as a Cartesian product of prime graphs:
Beyond monoids, the notion of monus can be applied to other structures. For instance, a naturally ordered semiring (sometimes called a dioid [6]) is a semiring where the commutative monoid induced by the addition operator is naturally ordered.
Let denote the free monoid on a set of generators , that is, the set of all strings written in the alphabet .The asterisk is a standard notation for the Kleene star.An independency relation on the alphabet then induces a symmetric binary relation on the set of strings : two strings , are related, , if and only if there exist ,, and a pair (,) such that = and =.