enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).

  3. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Exponentiation is easily misconstrued: note that the operation of raising to a power is right-associative (see below). Tetration is iterated exponentiation (call this right-associative operation ^), starting from the top right side of the expression with an instance a^a (call this value c). Exponentiating the next leftward a (call this the ...

  4. APL syntax and symbols - Wikipedia

    en.wikipedia.org/wiki/APL_syntax_and_symbols

    The above dyadic functions examples [left and right examples] (using the same / symbol, right example) demonstrate how Boolean values (0s and 1s) can be used as left arguments for the \ expand and / replicate functions to produce exactly opposite results.

  5. Hyperoperation - Wikipedia

    en.wikipedia.org/wiki/Hyperoperation

    The concepts of successor, addition, multiplication and exponentiation are all hyperoperations; the successor operation (producing x + 1 from x) is the most primitive, the addition operator specifies the number of times 1 is to be added to itself to produce a final value, multiplication specifies the number of times a number is to be added to ...

  6. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.

  7. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    If exponentiation is indicated by stacked symbols using superscript notation, the usual rule is to work from the top down: [2] [7] a b c = a (b c) which typically is not equal to (a b) c. This convention is useful because there is a property of exponentiation that (a b) c = a bc, so it's unnecessary to use serial exponentiation for this.

  8. Shunting yard algorithm - Wikipedia

    en.wikipedia.org/wiki/Shunting_yard_algorithm

    The result for the above examples would be (in reverse Polish notation) "3 4 +" and "3 4 2 1 − × +", respectively. The shunting yard algorithm will correctly parse all valid infix expressions, but does not reject all invalid expressions. For example, "1 2 +" is not a valid infix expression, but would be parsed as "1 + 2". The algorithm can ...

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    This definition of exponentiation with negative exponents is the only one that allows extending the identity + = to negative exponents (consider the case =). The same definition applies to invertible elements in a multiplicative monoid , that is, an algebraic structure , with an associative multiplication and a multiplicative identity denoted 1 ...