Search results
Results from the WOW.Com Content Network
Sulfur (16 S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: 32 S (95.02%), 33 S (0.75%), 34 S (4.21%), and 36 S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei, in the so-called alpha process of exploding type II supernovas (see silicon burning).
Of the 25 known isotopes of sulfur, four are stable. [1] In order of their abundance, those isotopes are 32 S (94.93%), 34 S (4.29%), 33 S (0.76%), and 36 S (0.02%). [2] The δ 34 S value refers to a measure of the ratio of the two most common stable sulfur isotopes, 34 S: 32 S, as measured in a sample against that same ratio as measured in a known reference standard.
In the atomic symbol of 32 S, the number 32 refers to the mass of each sulfur atom in daltons, the result of the 16 protons and 16 neutrons of 1 dalton each that make up the sulfur nucleus. The three rare stable isotopes of sulfur are 34 S (4.2% of natural sulfur), 33 S (0.75%), and 36 S (0.015%). [4]
With the discovery of oxygen isotopes in 1929, a situation arose where chemists based their calculations on the average atomic mass (atomic weight) of oxygen whereas physicists used the mass of the predominant isotope of oxygen, oxygen-16. This discrepancy became undesired and a unification between the chemistry and physics was necessary. [13]
Sulfur isotope fractionations are usually measured in terms of δ 34 S due to its higher abundance (4.25%) compared to the other stable isotopes of sulfur, though δ 33 S is also sometimes measured. Differences in sulfur isotope ratios are thought to exist primarily due to kinetic fractionation during reactions and transformations.
In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomic weight listed for the element in the periodic table. The abundance of an isotope varies from ...
For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.
The standard atomic weight of a chemical element (symbol A r °(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, isotope 63 Cu (A r = 62.929) constitutes 69% of the copper on Earth, the rest being 65 Cu (A r = 64.927), so