Search results
Results from the WOW.Com Content Network
Running a processor at high clock speeds allows for better performance. However, when the same processor is run at a lower frequency (speed), it generates less heat and consumes less power. In many cases, the core voltage can also be reduced, further reducing power consumption and heat generation. By using SpeedStep, users can select the ...
This involves comparing the timer tick of the operating system (the tick that usually is 100–1000 times per second) and the speed of the CPU. If the OS timer and the CPU run on two independent clock crystals the situation is ideal and more or less the same as the previous example.
For example, an IBM PC with an Intel 80486 CPU running at 50 MHz will be about twice as fast (internally only) as one with the same CPU and memory running at 25 MHz, while the same will not be true for MIPS R4000 running at the same clock rate as the two are different processors that implement different architectures and microarchitectures ...
Underclocking, also known as downclocking, is modifying a computer or electronic circuit's timing settings to run at a lower clock rate than is specified. Underclocking is used to reduce a computer's power consumption, increase battery life, reduce heat emission, and it may also increase the system's stability, lifespan/reliability and compatibility.
In PCs, the CPU's external address and data buses connect the CPU to the rest of the system via the "northbridge". Nearly every desktop CPU produced since the introduction of the 486DX2 in 1992 has employed a clock multiplier to run its internal logic at a higher frequency than its external bus, but still remain synchronous with it. This ...
ACPI 1.0 (1996) defines a way for a CPU to go to idle "C states", but defines no frequency-scaling system. ACPI 2.0 (2000) introduces a system of P states (power-performance states) that a processor can use to communicate its possible frequency–power settings to the OS. The operating system then sets the speed as needed by switching between ...
The operating system may choose to adjust the scheduling of each transition (high-low or low-high) based on an internal clock. The latency is the delay between the process instruction commanding the transition and the hardware actually transitioning the voltage from high to low or low to high.
An advantage of the latter approach is that programs monitoring the system status can see the idle task along with all other tasks; [citation needed] an example is Windows NT's System Idle Process. Some programs are designed to appear to make use of CPU idle time, meaning that they run at a low priority (but slightly higher than idle priority ...