enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clause (logic) - Wikipedia

    en.wikipedia.org/wiki/Clause_(logic)

    In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives.A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term).

  3. Horn clause - Wikipedia

    en.wikipedia.org/wiki/Horn_clause

    In mathematical logic and logic programming, a Horn clause is a logical formula of a particular rule-like form that gives it useful properties for use in logic programming, formal specification, universal algebra and model theory. Horn clauses are named for the logician Alfred Horn, who first pointed out their significance in 1951. [1]

  4. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    A clause is a disjunction of literals (or a single literal). A clause is called a Horn clause if it contains at most one positive literal. A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses (or a single clause). For example, x 1 is a positive literal, ¬x 2 is a negative literal, and x 1 ∨ ¬x 2 is a clause.

  5. Horn-satisfiability - Wikipedia

    en.wikipedia.org/wiki/Horn-satisfiability

    Horn-satisfiability and Horn clauses are named after Alfred Horn. A Horn clause is a clause with at most one positive literal, called the head of the clause, and any number of negative literals, forming the body of the clause. A Horn formula is a propositional formula formed by conjunction of Horn clauses.

  6. Glossary of logic - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_logic

    A way of expressing a logical formula as a conjunction of clauses, where each clause is a disjunction of literals. connected A property of a graph in which there is a path between any two vertices, or a property of a topological space in which it cannot be divided into two disjoint nonempty open sets. connexive logic

  7. Literal (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Literal_(mathematical_logic)

    In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).

  8. Resolution (logic) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(logic)

    For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the (complement of the) Boolean satisfiability problem. For first-order logic , resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic , providing a more ...

  9. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...