Search results
Results from the WOW.Com Content Network
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
The load line diagram at right is for a resistive load in a common emitter circuit. The load line shows how the collector load resistor (R L) constrains the circuit voltage and current. The diagram also plots the transistor's collector current I C versus collector voltage V CE for different values of base current I base.
The input resistance of the load stands in series with Rs. Whereas the voltage source by itself was an open circuit, adding the load makes a closed circuit and allows charge to flow. This current places a voltage drop across , so the voltage at the output terminal is no longer .
Due to transistor action, emitter current, I E, is very nearly equal to the collector current, I C, of the transistor (which in turn, is the current through the load). Thus, the load current is constant (neglecting the output resistance of the transistor due to the Early effect) and the circuit operates as a constant current source. As long as ...
The neutral current can be determined by adding the three phase currents together as complex numbers and then converting from rectangular to polar co-ordinates. If the three-phase root mean square (RMS) currents are I L 1 {\displaystyle I_{L1}} , I L 2 {\displaystyle I_{L2}} , and I L 3 {\displaystyle I_{L3}} , the neutral RMS current is:
Load regulation is the capability to maintain a constant voltage (or current) level on the output channel of a power supply despite changes in the supply's load (such as a change in resistance value connected across the supply output).
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
A current–voltage characteristic or I–V curve (current–voltage curve) is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference, across it.