Search results
Results from the WOW.Com Content Network
By substituting the vis-viva equation into the kinetic energy component, the orbital energy of a circular orbit is given by: = + = Where G is the gravitational constant, M E is the mass of the central body and m is the mass of the orbiting satellite. We take the derivative of the orbital energy with respect to the radius.
The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.
In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.
Orbit modeling is the process of creating mathematical models to simulate motion of a massive body as it moves in orbit around another massive body due to gravity.Other forces such as gravitational attraction from tertiary bodies, air resistance, solar pressure, or thrust from a propulsion system are typically modeled as secondary effects.
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
For Earth-orbiting satellites, the reference plane is usually the Earth's equatorial plane, and for satellites in solar orbits it is the ecliptic plane. The intersection is called the line of nodes, as it connects the reference body (the primary) with the ascending and descending nodes.
An elliptical orbit is depicted in the top-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy decreases as the orbiting body's speed decreases and distance increases according to Kepler's ...
An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...