Search results
Results from the WOW.Com Content Network
[1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general ARMA and ARIMA models of time series, [3] which have a more complicated stochastic ...
Moving average model, order identified by where plot becomes zero. Decay, starting after a few lags Mixed autoregressive and moving average model. All zero or close to zero Data are essentially random. High values at fixed intervals Include seasonal autoregressive term. No decay to zero (or it decays extremely slowly) Series is not stationary.
The model is usually denoted ARMA(p, q), where p is the order of AR and q is the order of MA. The general ARMA model was described in the 1951 thesis of Peter Whittle , Hypothesis testing in time series analysis , and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins .
Non-seasonal ARIMA models are usually denoted ARIMA(p, d, q) where parameters p, d, q are non-negative integers: p is the order (number of time lags) of the autoregressive model, d is the degree of differencing (the number of times the data have had past values subtracted), and q is the order of the moving-average model.
Plotting the partial autocorrelation function and drawing the lines of the confidence interval is a common way to analyze the order of an AR model. To evaluate the order, one examines the plot to find the lag after which the partial autocorrelations are all within the confidence interval. This lag is determined to likely be the AR model's order ...
Errors-in-variables model; Instrumental variables regression; Quantile regression; Generalized additive model; Autoregressive model; Moving average model; Autoregressive moving average model; Autoregressive integrated moving average; Autoregressive conditional heteroskedasticity
2. Correlograms are also used in the model identification stage for fitting ARIMA models. In this case, a moving average model is assumed for the data and the following confidence bands should be generated: / (+ =) where k is the lag. In this case, the confidence bands increase as the lag increases.
Moving average; Moving-average model; Moving average representation – redirects to Wold's theorem; Moving least squares; Multi-armed bandit; Multi-vari chart; Multiclass classification; Multiclass LDA (linear discriminant analysis) – redirects to Linear discriminant analysis; Multicollinearity; Multidimensional analysis; Multidimensional ...