Search results
Results from the WOW.Com Content Network
Divine Proportions does not assume much in the way of mathematical background in its readers, but its many long formulas, frequent consideration of finite fields, and (after part I) emphasis on mathematical rigour are likely to be obstacles to a popular mathematics audience. Instead, it is mainly written for mathematics teachers and researchers.
Having attending several of Norman Wildeberger's talks, the rationale behind rational trigonometry is that the concept of an angle belongs to a circle (ie, Euler's formula), and that the concept of spread is far more natural for a triangle (c.f. Thales' theorem). Angles and distance also break down in fields other than the real numbers, whereas ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
I just created this article, because Wildberger clearly needed an article, as he has made an important contribution to mathematics with his new subject known as "rational trigonometry."Dratman 01:56, 17 September 2011 (UTC) I think there have been changes since the Wikipedia:Articles for deletion/Norman J. Wildberger discussion. Wildberger is ...
The theorem extends to the other trigonometric functions as well. [2] For rational values of θ, the only rational values of the sine or cosine are 0, ±1/2, and ±1; the only rational values of the secant or cosecant are ±1 and ±2; and the only rational values of the tangent or cotangent are 0 and ±1. [3]
A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .