Search results
Results from the WOW.Com Content Network
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
If you’re more of a riddles person, we’ve got regular ol’ math riddles and math riddles for kids. And, if you prefer your riddles free of math, we have great riddles for kids too.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Some of the more well-known topics in recreational mathematics are Rubik's Cubes, magic squares, fractals, logic puzzles and mathematical chess problems, but this area of mathematics includes the aesthetics and culture of mathematics, peculiar or amusing stories and coincidences about mathematics, and the personal lives of mathematicians.
The other six Millennium Prize Problems remain unsolved, despite a large number of unsatisfactory proofs by both amateur and professional mathematicians. Andrew Wiles , as part of the Clay Institute's scientific advisory board, hoped that the choice of US$ 1 million prize money would popularize, among general audiences, both the selected ...
Q: I saw my math teacher with a piece of graph paper yesterday. A: I think he must be plotting something. Q: If you multiply this number by any other number, the answer will always be the same.
The monkey and the coconuts is a mathematical puzzle in the field of Diophantine analysis that originated in a short story involving five sailors and a monkey on a desert island who divide up a pile of coconuts; the problem is to find the number of coconuts in the original pile (fractional coconuts not allowed).
The non-abelian case remains unsolved, if one interprets that as meaning non-abelian class field theory. — 10th: Find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. Resolved. Result: Impossible; Matiyasevich's theorem implies that there is no such algorithm. 1970 11th