enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    The classical equivalence between Playfair's axiom and Euclid's fifth postulate collapses in the absence of triangle congruence. [18] This is shown by constructing a geometry that redefines angles in a way that respects Hilbert's axioms of incidence, order, and congruence, except for the Side-Angle-Side (SAS) congruence.

  3. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Hilbert's axioms: Hilbert's axioms had the goal of identifying a simple and complete set of independent axioms from which the most important geometric theorems could be deduced. The outstanding objectives were to make Euclidean geometry rigorous (avoiding hidden assumptions) and to make clear the ramifications of the parallel postulate.

  5. Propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Propositional_calculus

    An axiomatic system is a set of axioms or assumptions from which other statements (theorems) are logically derived. [96] In propositional logic, axiomatic systems define a base set of propositions considered to be self-evidently true, and theorems are proved by applying deduction rules to these axioms. [97] See § Syntactic proof via axioms.

  6. Synthetic geometry - Wikipedia

    en.wikipedia.org/wiki/Synthetic_geometry

    It relies on the axiomatic method for proving all results from a few basic properties initially called postulates, and at present called axioms. After the 17th-century introduction by René Descartes of the coordinate method, which was called analytic geometry , the term "synthetic geometry" was coined to refer to the older methods that were ...

  7. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    One example is the parallel postulate, which is neither provable nor refutable from the remaining axioms of Euclidean geometry. Mathematicians have shown there are many statements that are neither provable nor disprovable in Zermelo–Fraenkel set theory with the axiom of choice (ZFC), the standard system of set theory in mathematics (assuming ...

  8. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    This postulate does not specifically talk about parallel lines; [1] it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate.

  9. Absolute geometry - Wikipedia

    en.wikipedia.org/wiki/Absolute_geometry

    In Euclid's Elements, the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry.One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in ...